在基于电荷转移(charge transfer,CT)态的发光器件中,CT态的演化及其相互作用对器件发光有重要影响.将分子内CT态材料4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran(DCJTB)以不同浓度掺杂于磷光主体材料1,3-bis(9-carbazolyl)benzene(m CP)中,通过测量器件电致发光的磁场效应(magnetoelectroluminescence,MEL),来研究器件中CT态及其相互作用.在±500 m T的磁场范围内,MEL曲线展示出奇特的变化:当掺杂浓度从高浓度(20%)降至低浓度(5%)时,低场部分从正转变为负;而高场部分没有明显的浓度依赖关系,均表现为缓慢下降.另外,在不同温度下MEL高低场部分的幅度都有很大变化.这些变化表明,器件中存在CT态的系间窜越、反向系间窜越过程,以及CT态间的湮灭过程,且这些过程受到掺杂浓度和温度的影响,导致延迟发光的变化.
利用具有反向系间窜越(RISC)特性的荧光材料4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran(DCJTB)制备了掺杂型有机发光器件,并在20~300 K温度范围内测量了器件的磁致发光曲线(即magneto-electroluminescence,MEL).实验发现,这些MEL曲线表现出奇特的线型:先在低场部分(〈10 m T)小幅度地快速下降,再随着磁场的增加大幅度地缓慢下降,最终低场和高场都表现为负的MEL,这与具有系间窜越的激子型器件的MEL明显不同.另外,MEL曲线在低场和高场的下降幅度都受注入电流和工作温度的调控.通过分析三重态激子参与的自旋相关过程,认为这些负的MEL是由RISC与三重态激子湮灭(TTA)过程共同引起的,并且三重态激子的寿命是影响RISC过程的主要因素.
为了研究红荧烯(5,6,11,12-tetraphenylnaphthacene,Rubrene)器件中三重态激子与电荷相互作用的微观过程,制备了基于Rubrene的有机发光二极管,并测量了室温下器件的磁电导(magneto-conductance,MC).实验发现,器件MC曲线的幅值非常小且表现出了奇特的变化:即在0-8 m T的磁场范围内,MC随磁场快速增大;当磁场处于8-100 m T时,MC则表现为下降;但当磁场大于100 m T时,MC则表现为缓慢增加.分析发现,Rubrene器件中除了超精细相互作用外,还有空穴对三重态激子的解离作用和三重态激子对电子的散射作用的共存,且它们都受单重态激子分裂(singlet fission)的影响.利用Lorentzian和non-Lorentzian经验函数可以对MC进行较好拟合,进一步证实了上述观点.三重态激子解离和电子散射共存这一发现不仅有助于对Rubrene器件中电荷与激发态间相互作用机制的认识,在优化器件性能方面也有一定的指导意义.
利用具有激子态和电荷转移态(Charge-Transfer States,CTS)共存特性的PFOPV材料,本文制备了结构为ITO/PEDOT:PSS/PFOPV/Cs F/Al的聚合物发光器件,并测量了器件在不同偏压和温度下电流的磁场效应(又称磁电导效应(Magnetoconductance,MC))和电致发光光谱.实验发现,通过改变器件中激子态和CTS的相对比例,可以达到对MC低场(<40 m T)和高场(>40 m T)正负效应的有效调控.即当器件中CTS的相对比例较高时,MC的低场和高场均表现出明显的负磁电导效应,反之,则表现出正磁电导效应.采用经验公式对实验曲线进行定量分析表明,MC低场的正负效应可用系间窜越和反系间窜越过程来进行解释,而MC高场的正负转变则可归结为不同三重态与电荷相互作用的结果.本研究工作证明了三重态-电荷的反应方式对三重态中电子-空穴的间隔距离有强烈的依赖关系,同时为有机磁电导效应的有效调控提供了一条新的重要途径.