随着位置信息在各行各业中的广泛应用,空间大数据得到迅猛发展.空间大数据除具有数据量大的特点之外,还具有复杂性,同时,越来越多的应用对数据的实时性也有较高的要求.传统的GIS软件在承载和处理空间数据时,也面临越来越多的挑战,如难以对复杂多样的空间数据进行一体化存储和管理;传统GIS软件架构和单机处理能力,无法对较大体量(10亿条记录或更大)的空间数据进行分析.本文从分布式存储技术、分布式空间处理计算技术和分布式计算协调技术三个方面阐述如何应对上述问题,并提出了将Spark分布式框架和Su-perMap iObject for Spark空间处理引擎相结合的分布式空间处理计算技术,以及数据库的一体化管理和监控技术,实现对多种数据库如PostgreSQL集群、MongoDB和Elasticsearch的统一管理和监控.