A novel process that combines squeeze casting with partial remelting to obtain AZ61 magnesium alloy with semi-solid microstructures was proposed. In this route, the squeeze casting was used to predeform the magnesium alloy billets to obtain small dendritic structures. During subsequent partial remelting, small dendritic structures transform into globular grains surrounded by liquid films. The results show that the squeeze casting AZ61 alloy after partial remelting produces more ideal, finer semi-solid microstructure compared with as-cast AZ61 alloy treated by the same isothermal holding conditions. Moreover, the mechanical properties of the thixoformed AZ61 alloy prepared by squeeze casting plus partial remelting are better than those of the thixoformed alloy prepared by conventional casting plus partial remelting.
The cyclic extrusion compression (CEC) process was introduced into the AM60B magnesium alloy. The use of the CEC process was favorable for producing finer microstructures. The results show that the microstructure can be effectively refined with increasing the number of CEC passes. Once a critical minimum grain size was achieved, subsequent passes did not have any noticeable refining effect. As expected, the fine-grained alloy has excellent mechanical properties. The micro-hardness, yield strength, ultimate tensile strength and elongation to failure of two-pass CEC formed alloy are 72.2, 183.7 MPa, 286.3 MPa and 14.0%, but those of as-cast alloy are 62.3, 64 MPa, 201 MPa and 11%, respectively. However, there is not a clear improvement of mechanical properties with further increase in number of CEC passes in AM60B alloy. The micro-hardness, yield strength, ultimate tensile strength and elongation to failure of four-pass CEC formed alloy are 73.5, 196 MPa, 297 MPa and 16%, respectively.