为了有效地检测网络入侵行为,提出一种人工鱼群(AFSA)算法优化BP神经网络(BPNN)入侵检测模型。首先将BP神经网络的权值和阈值编码为AFSA的人工鱼状态,然后通过人工鱼群觅食、聚群、追尾等行为,对BP神经网络的参数进行优化,寻找到BP神经网络的最优参数,最后利用建立的最优BP神经网络模型,对网络入侵行为进行检测。在Windows XP操作系统,Matlab 2012平台上,采用KDD CUP 99数据集仿真测试,相对于传统的BP神经网络模型,本文模型可以显著提高网络入侵检测正确率,有着更加广泛的应用前景。
为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)优化ELM神经网络的网络入侵检测模型。首先将ELM神经网络参数编码成人工鱼的位置,然后利用人工鱼群算法通过模拟鱼群的觅食、聚群及追尾行为找到最优ELM神经网络参数,最后利用最优参数的ELM神经网络建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,模型不仅提高了入侵检测正确率,而且加快了网络入侵检测速度。
为了提高网络入侵检测的正确率,提出一种基于组合算法选择特征的网络入侵检测模型(GA-PSO)。首先建立网络入侵特征选择的数学模型,采用遗传算法迅速找到网络入侵的特征子集,然后采用粒子群算法进一步选择,找到最优特征子集,最后采用极限学习机建立网络入侵检测分类器,并采用KDD CUP 99数据集进行仿真测试。结果表明,GAPSO不仅提高了入侵检测速度,而且可以提高网络入侵检测的正确率。