为了提高可压缩雷诺平均Navier-Stokes(RANS)方程的求解效率,基于多块对接结构化网格发展了求解RANS方程的Jacobian-Free Newton Krylov(JFNK)方法.JFNK方法将求解非线性方程的非精确Newton法和求解线性方程的Krylov子空间迭代法结合,通过非精确Newton方法中不精确条件控制不同阶段线性方程的求解精度,并利用无矩阵技术求解矩阵与向量的乘积;针对Krylov内迭代收敛停滞的问题,引入LU-SGS方法作为预处理器,降低线性系统的刚性从而大幅度提高了内迭代的计算效率.利用JFNK方法模拟NACA 0012翼型、带襟翼的NLR-7301两段翼与带发动机短舱的DLR-F6翼身组合体的绕流问题,研究不同参数对JFNK方法收敛特性的影响,对比LU-SGS研究JFNK方法的收敛速度,并对JFNK方法求解复杂绕流问题的RANS方程进行确认.结果表明,JFNK方法求解RANS方程具有良好的稳定性,相对于其他时间推进方法,JFNK方法具有更高的计算效率.
基于Reynolds average Navier-Stockes(RANS)的三维Navier-Stokes流场控制方程耦合结构静力学方程时域分析方法,研究了带有发动机的民用飞机其动力效应对全机气动性能的影响。首先采用数值方法对发动机进排气边界条件进行了模拟,分析了带动力的涡扇发动机模型的流场,并将计算结果与实验进行比较,验证边界条件处理的准确性;以此为基础,考虑结构弹性变形,采用计算流体动力学/计算结构动力学(CFD/CSD)耦合的方法,分别对通气和带动力的翼吊发动机全机的气动性能进行了研究。结果表明:基于通气构型预测的升阻力系数,气动载荷和压心位置与考虑动力效应后的计算结果存在明显不同。弹性变形又会加剧这一差异,使得全机的升阻比下降约12.6%,升力系数下降约8.9%,压心位置后移。数值算例显示,在靠近发动机区域气动载荷受动力效应影响显著,远离该区域,弹性变形效应占主要影响因素,因此在进行带动力效应的民机气动性能分析时,考虑弹性变形的影响是十分必要的。