The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strain curves were obtained at the temperature ranging from 298 to 773 K and strain rate ranging from 1×10^(-3) to 5 s ^(-1). The results showed that the dynamic compressive strength decreased more slowly than the quasi-static compressive strength at elevated temperatures, which was attributed to the different failure modes of the composite under dynamic and quasi-static load. The strain rate sensitivity increased from 0.02 to 0.13 when the temperature increased from room temperature to 773 K, suggesting that the strain rate sensitivity of this type of composite is a function of temperature.