An algorithm for recovering the quaternion signals in both noiseless and noise contaminated scenarios by solving an L1-norm minimization problem is presented. The L1-norm minimization problem over the quaternion number field is solved by converting it to an equivalent second-order cone programming problem over the real number field, which can be readily solved by convex optimization solvers like SeDuMi. Numerical experiments are provided to illustrate the effectiveness of the proposed algorithm. In a noiseless scenario, the experimental results show that under some practically acceptable conditions, exact signal recovery can be achieved. With additive noise contamination in measurements, the experimental results show that the proposed algorithm is robust to noise. The proposed algorithm can be applied in compressed-sensing-based signal recovery in the quaternion domain.