近年来,数据流挖掘已成为知识发现领域中的一个研究热点.数据流中数据的无限性和概念漂移等特征使得传统的分类算法不能很好地适用于数据流环境.提出了一种基于eEP的分类器集成算法CEEPCE(classification by eEP-based classifiers ensemble)对数据流进行分类.CEEPCE使用eEP建立基分类器,当新数据块流入时训练新的分类器,并调整集成分类器中的基分类器.依据基分类器在新流入数据上的分类误差对其进行加权,集成权重最高的若干个基分类器来分类未来数据.实验表明,与单分类器相比,CEEPCE具有更好的分类准确率,并足以与以C4.5为基分类器的集成方法相媲美.