The phase equilibria and compositions at the Mg-rich corner of the Mg?Zn?Al ternary system at 335 °C were systemically investigated through the equilibrated alloy method by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) assisted with energy dispersive spectroscopy of X-ray (EDS). It is experimentally testified that theα-Mg solid solution is not in equilibrium with the Mg32(Al, Zn)49 (τ) ternary intermetallic compound orq quasicrystalline phase, but only in equilibrium with one ternary intermetallic compound Al5Mg11Zn4 (φ). The whole composition range of theφ phase was also obtained at 335 °C, i.e., 52.5%?56.4% Mg, 13.6%?24.0% Al, 19.6%?33.9% Zn (mole fraction). The solubility of Al in the MgZn phase is remarkably more than that in the Mg7Zn3 phase, and the maximum is about 8.6% Al. Aluminum and zinc are simultaneously soluble in theα-Mg solid solution.
The phase equilibria and compositions in Mg-rich comer at 300℃ were determined in the Mg-Zn-A1 ternary system through the equilibrated alloy method by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) assisted with energy dispersive spectroscopy of X-ray (EDS). The results show that there exist three three-phase regions consisted of a-Mg+Mg17A112(7)+A15Mg11Zn4(φ), a-Mg+Mga2(Al, Zn)49(r)+A15MgllZn4(φ) and a-Mg+MgZn+Mg32(A1, Zn)49(r), respectively. The intermetallic compounds in equilibrium with a-Mg phase all have large composition ranges, not appear to be linear. At the same time, both zinc and aluminum are soluble in the a-Mg solid solution, with which the compounds are in equilibrium.