提出一种基于均匀圆阵单次快拍数据的相干信源波达方向(direction of arrival,DOA)估计方法——直接数据特征值分解(direct data eigenvalue decomposition,DD-EVD)法.算法通过模式空间转换将均匀圆阵虚拟为均匀线阵,再直接利用波束空间的快拍数据,构造一个Toeplitz矩阵,并对矩阵按阵列流形分解.理论推导证明,矩阵的秩得到恢复,只与入射信号个数有关.对该矩阵进行特征值分解可得到正确的信号子空间和噪声子空间,进而完成相干信源DOA估计.算法使用单次快拍数据构造矩阵,适合非平稳信号参数的估计,同时不需要快拍累计和相关运算,降低了计算复杂度.仿真结果验证了算法的有效性.
提出一种基于弹载双均匀圆阵(uniform circular array,UCA)的相干信源二维波达方向(direction ofarrival,DOA)估计算法。算法首先沿轴向对阵列进行虚拟平移,利用空间平滑技术处理数据以恢复协方差矩阵的秩,实现相干信号解相干,再依据轴向双圆阵列的结构特点构造波达方向矩阵,对波达方向矩阵进行特征值分解可得到包含俯仰角信息的特征值和包含俯仰角信息与方位角信息的特征矢量,完成相干信源DOA估计。算法将波达方向矩阵法引入均匀圆阵,估计参数自动配对,同时避免了常规算法的二维谱峰搜索,实时性好。仿真结果表明,与矩阵重构的均匀圆阵旋转不变子空间(uniform circular array-estimation of signal parameters via rotational invariance techniques,UCA-ESPRIT)算法相比,本文算法计算量较小,分辨率高。
针对传统联合估计方法计算量大、需要多维谱峰搜索的问题,该文提出了一种基于垂直阵列结构的任意初始相位非圆信号2维DOA(Direction Of Arrival)和初相联合估计方法,利用垂直阵列特点,将3维参数估计问题转化为可并行处理的3个2维参数估计,在每一个子阵上,同时使用噪声子空间正交性和信号子空间旋转不变性,将2维参数估计进一步转化为1维估计问题,最终只需要对扩展协方差矩阵进行一次特征分解即可实现2维DOA和初相的联合估计及自动配对。该方法适用于空间信源处于过载的情形和低信噪比、短快拍环境,可估计信源数为2(M-1)。数值仿真验证了该算法的有效性。