核概率主元分析(kernel probabilistic principal component analysis,KPPCA)能够有效去除过程的非线性。但是KPPCA仅构造了生产过程的静态线性关系,处理具有较强动态特性的实际工业生产过程效果较差。为克服上述缺点,提出一种基于动态KPPCA的过程监测方法,利用核函数将经过压缩的动态增广数据映射到高维空间,然后利用PPCA对满足线性关系的过程变量映射值进行监测。仿真结果表明:该方法监测指标对故障的灵敏度高,误报率和漏检率较小,故障状况与正常状况很明显的分离开来。