High-speed on-off valves are widey used in PWM electropneumatic servo sys- tems and their characteristics are generally described by their on and off delay time. This paper focuses on establishing the relationships between their on-off switching behaviors and their frequency response characteristics. A method is proposed by which the frequency response characteristics of an analog PWM high-speed on-off valve can be calculated for inputs whose periods are certain multiples of the carrier period, based on its switching be- haviors. Thus, a simple and direct describing function for a PWM high-speed on-off valve is established.
Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in systems into four typical types of composite valves whose static characteristics are related not only to the structures of the single valves and the composite ones, but also to the PWM control modes. It is proved that the composite valves have similar features as those of servo valves. The nonlinear specific properties of single valves composited can be completely compensated by the suitable PWM control modes.
Based on a simplified model reference adaptive control(SMRAC) algorithm a parameter modification algorithm according to fuzzy laws is proposed in this paper. The method makes the adaptive parameters in SMRAC only rely on the status of performance error. Thus it eliminates the influences of gain coefficients in SMRAC and the amplitude of input signal on the dynamic characteristics. Experiments on various step amplitudes and loads show that the performances of SMRAC are improved by incorporating fuzzy modification method.