A Kullback-Leibler(KL)distance based algorithm is presented to find the matches between concepts from different ontologies. First, each concept is represented as a specific probability distribution which is estimated from its own instances. Then, the similarity of two concepts from different ontologies is measured by the KL distance between the corresponding distributions. Finally, the concept-mapping relationship between different ontologies is obtained. Compared with other traditional instance-based algorithms, the computing complexity of the proposed algorithm is largely reduced. Moreover, because it proposes different estimation and smoothing methods of the concept distribution for different data types, it is suitable for various concepts mapping with different data types. The experimental results on real-world ontology mapping illustrate the effectiveness of the proposed algorithm.