为解决临床医学量表数据类别不均衡容易对模型产生影响,以及在处理量表数据任务时深度学习框架性能难以媲美传统机器学习方法问题,提出了一种基于级联欠采样的Transformer网络模型(layer by layer Transformer,LLT)。LLT通过级联欠采样方法对多数类数据逐层删减,实现数据类别平衡,降低数据类别不均衡对分类器的影响,并利用注意力机制对输入数据的特征进行相关性评估实现特征选择,细化特征提取能力,改善模型性能。采用类风湿关节炎(RA)数据作为测试样本,实验证明,在不改变样本分布的情况下,提出的级联欠采样方法对少数类别的识别率增加了6.1%,与常用的NEARMISS和ADASYN相比,分别高出1.4%和10.4%;LLT在RA量表数据的准确率和F 1-score指标上达到了72.6%和71.5%,AUC值为0.89,mAP值为0.79,性能超过目前RF、XGBoost和GBDT等主流量表数据分类模型。最后对模型过程进行可视化,分析了影响RA的特征,对RA临床诊断具有较好的指导意义。
针对高血压靶器官损伤时域脉搏波预测模型效率较低和分类精度较差的问题,本文提出了一种基于频域脉搏波特征图预测模型,实现高效无创辅助诊断。本文采用高斯滤波替换三角滤波,将脉搏波时域特征转换为频域矩阵特征图,并采用一种改进的SiMAM注意力机制模型EfficientNetS,提高脉搏波全局特征提取能力。608例临床高血压靶器官损伤脉搏波样本经5-Fold交叉验证后分类模型评估指标F_(1)score、Accuracy、Precision、Sensitivity、曲线下面积(Area under the curve,AUC)值分别为:97.31%、98.72%、97.71%、97.04%、99.13%。与典型模型相比,本文方法具有较高的分类精度和泛化性能。此外,本文采用随机森林算法研究时域和频域特征与脉搏波分类相关性,深入挖掘潜在的影响高血压靶器官损伤分类的关键因素,发现高血压靶器官损伤的发病机理,为临床诊断提供有效支持。