应用国家气候中心气候模式(BCC_CSM1.1)CMIP5和AMIP试验结果对模式模拟南亚高压的能力进行了评估。结果表明,BCC_CSM1.1模式对作为北半球高层大气环流活动中心的南亚高压有较好的模拟能力。它能够模拟出南亚高压的气候平均状态、季节变化,对南亚高压脊线的位置、高压中心的位置及其季节变化也有较好的模拟。模式存在的主要问题是高度场和南亚高压强度的模拟结果较观测明显偏弱;模拟的脊线位置在冬半年要比观测略偏南;模拟的南亚高压中心在某些月份与观测有出入,例如,5月南亚高压中心的模拟较观测偏西,夏季南亚高压的双中心的位置与实际也略有差异;模拟的南亚高压强度偏低与多种因素有关。比较耦合模式与单独大气模式模拟的南亚高压强度发现,在给定观测海温的条件下,模拟的误差减小13%~15%。因此可以认为耦合模式的误差大部分来自大气分量。海洋模拟的改进虽然对总体的模拟结果有所改进但贡献不大;比较T106和T42两种分辨率的模式对南亚高压进行模拟结果发现,分辨率的提高明显减小了南亚高压及全球100 h Pa位势高度场的模拟误差。为验证地形强迫对模拟结果的影响,进行了改变青藏高原地形高度的试验,结果表明青藏高原地形高度对南亚高压的强度有明显的影响,高原高度升高将会促使南亚高压及更大范围的高层位势高度场增强。因此,正确给定高原地形这一模式的下边界条件,对模拟结果的改进有重要作用。
使用高灵敏度的电容式微压波传感器对1998年4月11日16时发生在贵州省普定县的一次降冰雹过程的重力波进行观测,利用WRF(Weather Research and Forecast)中尺度模式对这一过程进行数值模拟,使用Morlet小波方法对模拟结果进行分析,得出这一过程中惯性重力波的分布和变化规律,并分析急流、地形及切变线对惯性重力波的影响.观测发现:在降冰雹前,每隔1~4小时出现一次短周期重力波阵性增强的现象.数值模拟结果显示:在低空降冰雹前几个小时有强的短周期重力波出现,其中周期较长的出现早、存在时间长,周期较短的出现晚、存在时间短;强的低空急流和风速垂直切变触发对流或湍流的发生和加强,对流或湍流又激发了80~200 min的短周期重力波;短周期重力波更容易向垂直方向传播,而长周期重力波倾向于水平方向传播.长周期重力波在降冰雹后周期有明显变短现象,随高度越加明显.由地形形成的重力波在最高山峰上空振幅最大.
利用WRF(Weather Research and Forecasting)模式对渤海湾地区2009年9月26日一次碰撞型海风锋天气过程进行了数值模拟分析,模拟结果较好地重现了这次天气过程以及海风锋的结构和特征。结果显示,海风锋锋后是较为深厚的对流不稳定能量和水汽高值区,锋后水汽高值区的形成源于海风的堆积和往高空输送,而锋后对流不稳定能量的产生归因于抬升凝结高度和自由对流高度的降低以及平衡高度的升高,这些高度变化则源于冷湿海风给低层大气带来的降温和增湿,其中给低层大气带来的增湿是主要影响因子。对流系统与海风锋相向碰撞时,对流系统容易进入海风锋锋后触发强对流不稳定能量形成强对流运动,同时弱对流抑制为对流运动的触发提供了有利的条件,强对流运动把海风锋锋后充沛的水汽往上输送,从而造成强降水天气。另外,对流系统与海风锋碰撞后沿着海风锋锋后移动可能更有利于对流运动的发展和维持。