Nano-CeO2 (RE) particles were co-deposited into Ni-P binary composite coatings by applying pulse current (PC) under ultrasonic (U) field. Morphology, chemical content and crystal microstructure were characterized by environmental scanning electron microscopy (E-SEM) with energy dispersive X-ray analysis (EDXA), XRD diffractometry and transmission electron microscopy (TEM). Experimental results show that Ni-P coating reinforced with 15g/L nano-CeO2, in amorphous state and with compact structure, can be improved in the microhardness from HV0.2580 to HV0.2780 by annealing at 600 °C for 2 h. The highest content of codeposited Ce and deposition rate can reach 2.3% and 68 μm/h, respectively. Furthermore, the effect of RE adsorption and pulse overpotential on depositional mechanism was investigated. n-CeO2 particles or Ce4+ ions with strong adsorption capacity acted as the catalytic nucleus to improve densification effectively. During annealing at 600 °C for 2 h, n-CeO2 particles will uniformly adsorb on crystal grain to preferentially pad and heal up gaps of cracking Ni boundaries, promoting dispersion strengthening with refiner-grained structure.
The pultrusion of the polybenzoxazine resin matrix Z-pin is studied, because the Z-pin technology is an efficient reinforcement method for composites. Based on the curing characteristics acquired by differential scanning calorimeter(DSC) analysis, the suitable mould temperature for pultrusion is researched with the visual inspection and the Z-pin short beam shear test. The pull-out test is designed to evaluate the post oven temperature that can affect the combination between Z-pins and laminates. And then, the appropriate temperature for the post oven is obtained. Finally, micro photos are used to inspect the defects in Z-pins. The results show that when the resin is heated to 70°C, Z-pin pultrusion demands for viscosity are satisfied, and the shelf-life is about 4 h. With the mould temperature increasing to 140°C, the Z-pin short beam shear strength rises correspondingly and the cross section profile is the best. When the post oven temperature declines, the combination between Z-pins and laminates becomes stronger. However, pores appear in Z-pins unless the oven temperature increases to 200°C. Therefore, the optimum post oven temperature should be set at 200°C.