Molecular dynamics simulations were carried out to study the internal energy and microstructure of potassium dihydrogen phosphates (KDP) solution at different temperatures. The water molecule was treated as a simple-point-charge model, while a seven-site model for the dihydrogen phosphate ion was adopted. The internal energy functions and the radial distribution functions of the solution were studied in detail. An unusually large local particle number density fluctuation was observed in the system at saturation temperature. It has been found that the specific heat of oversaturated solution is higher than that of unsaturated solution, which indicates the solution experiences a crystallization process below saturation temperature. The radial distribution function between the oxygen atom of water and the hydrogen atom of the dihydrogen phosphate ion shows a very strong hydrogen bond structure. There are strong interactions between potassium cation and oxygen atom of dihydrogen phosphate ion in KDP solution, and much more ion pairs were formed in saturated solution.