The rate constants of the nucleophilic reactions between amines and benzhydrylium ions were calculated using first-principles theoretical methods. Solvation models including PCM, CPCM, and COSMORS, as well as different types of atomic radii including UA0, UAKS, UAHF, Bondi, and UFF, and several single-point energy calculation methods (B3LYP, B3P86, B3PW91, BHANDH, PBEPBE, BMK, M06, MP2, and ONIOM method) were examined. By comparing the correlation between experimental rate constants and the calculated values, the ONIOM(CCSD(T)/6-311++G(2df,2p):B3LYP/6-311++G(2df,2p))//B3LYP/6- 31G(d)/PCM/UFF) method was found to perform the best. This method was then employed to calculate the rate constants of the reactions between diverse amines and diarylcarbenium ions. The calculated rate constants for 65 reactions of amines with diarylcarbenium ions are in agreement with the experimental values, indicating that it is feasible to predict the rate constant of a reaction between an amine and a diarylcarbenium ion through ab initio calculation.