The as-cast microstructures and mechanical properties of Mg?4Zn?xY?1Ca (x=1.0, 1.5, 2.0 and 3.0, mass fraction, %) alloys were investigated and compared. The results indicate that all the as-cast alloys are mainly composed ofα-Mg, Mg2Ca, Ca2Mg6Zn3,I (Mg3YZn6) andW (Mg3Y2Zn3) phases. However, with Y content increasing from 0.86% to 2.68%, the amount of the Ca2Mg6Zn3 phase gradually decreases but that of theI (Mg3YZn6) andW (Mg3Y2Zn3) phases gradually increases. Furthermore, an increase in Y content from 0.86% to 2.68% also causes the grain size of the as-cast alloys to gradually decrease. In addition, the tensile and creep properties of the as-cast alloys vary with Y content. Namely, with Y content increasing from 0.86% to 2.68%, the creep properties gradually increase, whereas the tensile properties firstly increase and attain the maximum at 1.77% Y, beyond that they decrease. Amongst the as-cast alloys with 0.86% Y, 1.19% Y, 1.77% Y and 2.68% Y, the alloy with 1.77% Y exhibits the relatively optimal tensile and creep properties.
The effects of the addition of 0.6%Ca(mass fraction) on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc magnesium alloys were investigated and compared by optical microscopy and scanning electron microscopy,differential scanning calorimetry analysis,and tensile and creep tests.The results indicate that the addition of 0.6%Ca to the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys can refine the grains of the two alloys.At the same time,the addition of 0.6%Ca to the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys can effectively improve the tensile properties of the two alloys.In addition,the addition of 0.6%Ca can also improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy but is not beneficial to the creep properties of the Mg-4Y-1.2Mn-0.9Sc alloy.The different effects of minor Ca on the creep properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys are possibly related to the difference in the solid solubilities of Ce and Y in Mg.