李雪草
- 作品数:2 被引量:55H指数:2
- 供职机构:清华大学更多>>
- 发文基金:遥感科学国家重点实验室开放基金清华大学科研项目国家自然科学基金更多>>
- 相关领域:天文地球更多>>
- 全球地表覆盖制图研究新范式被引量:30
- 2016年
- 全球土地覆盖制图在过去的10年中取得重要进展,空间分辨率从300 m增加至30 m,分类详细程度也有所提高,从10余个一级类到包含29类的二级分类体系。然而,利用光学遥感数据在大空间范围制图方面仍有诸多挑战。本文主要介绍在农田、居住区、水体和湿地制图方面的挑战,讨论在使用多时相和多传感器遥感数据上的困难,这将是未来遥感应用的趋势。由于各种地表覆盖数据产品有自己定义的地表覆盖类型体系和处理流程,通过调和以及集成各种全球土地覆盖制图产品能够满足新的应用目的,并且可以最大程度地利用已有的土地覆盖数据。然而,未来全球土地覆盖制图需要能够按照新应用需求动态生成地表覆盖数据产品的能力。过去的研究表明有效地提高局部尺度制图的分类精度,更好的算法、更多种特征变量(新类型的数据或特征)以及更具代表性的训练样本都非常重要。我们却认为特征变量的使用更重要。本文提出了一个全球土地覆盖制图的新范式。在这个新范式中,地表覆盖类型的定义被分解为定性指标的类、定量指标的植被郁闭度和高度。非植被类型通过它们的光谱和纹理信息提取。复合考虑类、郁闭度和高度3种指标来定义和区别包含植被的地表覆盖类型。郁闭度和高度不能在分类算法中提取,需要借助其他直接测量或间接反演方法。新的范式还表明,一个普遍适用的训练样本集有效地提高了在非洲大陆尺度土地覆盖分类。为了确保更加容易地实现从传统的土地覆盖制图到全球土地覆盖制图新范式的转变,建议构建一体化的数据管理和分析系统。通过集成相关的观测数据、样本数据和分析算法,逐步建成全球土地覆盖制图在线系统,构建全球地表覆盖制图门户网站,为数据生产者、数据用户、专业研究人员、决策人员搭建合作互助的平台。
- 宫鹏张伟俞乐李丛丛王杰梁璐李雪草计璐艳白玉琪
- 关键词:遥感图像分类
- 基于多源数据集成的多分辨率全球地表覆盖制图被引量:25
- 2014年
- 全球地表覆盖数据产品(如地表覆盖,植被连续场)最高空间分辨率已达到30 m.不同领域的用户对于这些产品的精度和空间分辨率有着不同的需求.基于此,本文从制图精度和空间分辨率两方面对现有的30 m地表覆盖数据进行改进和分析.首先通过将两套30 m全球地表覆盖产品(FROM-GLC、FROM-GLC-seg(Segmentation))与两套粗分辨率全球产品(基于夜间灯光数据的不透水层NL-ISA、MODIS城市产品MODIS-urban)进行集成,生成了30 m分辨率的地表覆盖新产品FROM-GLC-agg(Aggregation).随后,采用了分辨率低于30 m的数据集(如MODIS地表覆盖产品MCD12Q1,全球地表覆盖产品GlobCover2009,MODIS水体掩模产品MOD44W等)对FROM-GLC-agg进行后处理以进一步消除类别混淆.经过多源数据合成的新地表覆盖数据产品中来自30 m分辨率全球地表覆盖产品的象元仍占98.9%.在此基础上,通过众数聚合和比例聚合这两种升尺度方法生成了8套粗分辨率(250 m,500 m,1 km,5km,10 km,25 km,50 km和100 km)全球地表覆盖数据集来满足不同应用的需求.通过基于混淆矩阵的精度比较表明FROM-GLC-agg的总体精度为65.51%,该精度显著优于先前的两套30 m地表覆盖产品.多源数据合成后的30 m分辨率数据以及升尺度处理后的250 m,500 m,1km分辨率数据的最高总体精度分别为69.50%,76.65%,74.60%和73.47%.对采用众数聚合法得到的不同分辨率下地表覆盖类型的面积偏差分析显示,当分辨率超过5 km时,大部分植被类型会有至少5%的面积偏差.因此,对于需要使用粗分辨率地表覆盖数据作为输入的用户,建议使用包含了准确地表覆盖类型占比的比例聚合数据.
- 俞乐王杰李雪草李丛丛赵圆圆宫鹏
- 关键词:LANDSAT多分辨率