Phase inversion emulsification technique is an effective physical method to prepare waterborne dispersions of polymeric resins. In this study, a multi\|hollow epoxy resin sphere was obtained by incomplete phase inversion emulsification. The dynamic morphological evolution of water droplets dispersed in bisphenol. A epoxy resin/emulsifier (a multi\|block copolymer) during phase inversion process was investigated with scanning electron microscopy. It is shown that small discrete water droplets are dispersed in the epoxy resin continuous phase at low water content. In this case, the dynamic coalescence among the small water droplets is ignored. With increasing water content, the dynamic coalescence becomes remarkable and larger water drops are formed by the coalescence among the small water droplets. The larger water drops are randomly distributed within the continuous phase. Meanwhile, some necklace like structures with varied length co\|exist with the small water droplets and larger water drops. Incomplete phase inversion is achieved through the coalescence among the larger water drops, and some small water droplets are entrapped therein. In this case, a kind of multi\|hollow sphere is obtained. While, in some local regions, all the nearest small water droplets coalesce simultaneously to be continuous phase to achieve complete phase inversion, and small discrete waterborne particles are obtained. The dynamic coalescence among the small water droplets dispersed in epoxy resin continuous phase could be analyzed in terms of the improved Smoluchowski equation.
The effects of emulsifier molecular architecture on phase inversion process including the critical water content at phase inversion point as well as the particle size are investigated. It is found that the water content at phase inversion point reaches a maximum when the molar ratio of the hydrophilic component PEG10000 to the hydrophobic component bisphenol A epoxy resin E20 is equal to 1∶1, meanwhile, the particle size reaches a minimum (about 100 nm). From the experimental results, it can be seen that to alter the molecular architecture of the emulsifier is an effective method to control the size of the waterborne particles prepared by phase inversion emulsification technique.