您的位置: 专家智库 > >

徐峻岭

作品数:4 被引量:92H指数:2
供职机构:南京大学计算机科学与技术系计算机软件新技术国家重点实验室更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇自动化与计算...

主题

  • 1篇互信息
  • 1篇NEURAL...
  • 1篇ROUGH_...
  • 1篇APPROA...
  • 1篇CLASSI...
  • 1篇CLUSTE...
  • 1篇ED
  • 1篇FEATUR...
  • 1篇HEURIS...
  • 1篇MARKOV
  • 1篇BLANKE...
  • 1篇CORNER

机构

  • 4篇东南大学
  • 3篇南京邮电大学
  • 1篇南京大学
  • 1篇武汉大学

作者

  • 4篇徐峻岭
  • 4篇徐宝文
  • 3篇崔自峰
  • 3篇张卫丰
  • 1篇陈林
  • 1篇周毓明

传媒

  • 2篇Journa...
  • 1篇计算机研究与...
  • 1篇计算机学报

年份

  • 1篇2012
  • 1篇2007
  • 2篇2006
4 条 记 录,以下是 1-4
排序方式:
基于互信息的无监督特征选择被引量:72
2012年
在数据分析中,特征选择可以用来降低特征的冗余,提高分析结果的可理解性和发现高维数据中隐藏的结构.提出了一种基于互信息的无监督的特征选择方法(UFS-MI),在UFS-MI中,使用了一种综合考虑了相关度和冗余度的特征选择标准UmRMR(无监督最小冗余最大相关)来评价特征的重要性.相关度和冗余度分别使用互信息来度量特征与潜在类别变量之间的依赖和特征与特征之间的依赖.UFS-MI同时适用于数值型和非数值型特征.在理论上证明了UFS-MI的有效性,实验结果也表明UFS-MI可以达到与传统的特征选择方法相当甚至更好的性能.
徐峻岭周毓明陈林徐宝文
关键词:互信息
Heuristic feature selection method for clustering被引量:1
2006年
In order to enable clustering to be done under a lower dimension, a new feature selection method for clustering is proposed. This method has three steps which are all carried out in a wrapper framework. First, all the original features are ranked according to their importance. An evaluation function E(f) used to evaluate the importance of a feature is introduced. Secondly, the set of important features is selected sequentially. Finally, the possible redundant features are removed from the important feature subset. Because the features are selected sequentially, it is not necessary to search through the large feature subset space, thus the efficiency can be improved. Experimental results show that the set of important features for clustering can be found and those unimportant features or features that may hinder the clustering task will be discarded by this method.
徐峻岭徐宝文张卫丰崔自峰
关键词:CLUSTERING
一种近似Markov Blanket最优特征选择算法被引量:17
2007年
特征选择可以有效改善分类效率和精度,传统方法通常只评价单个特征,较少评价特征子集.在研究特征相关性基础上,进一步划分特征为强相关、弱相关、无关和冗余四种特征,建立起Markov Blanket理论和特征相关性之间的联系,结合Chi-Square检验统计方法,提出了一种基于前向选择的近似Markov Blanket特征选择算法,获得近似最优的特征子集.实验结果证明文中方法选取的特征子集与原始特征子集相比,以远小于原始特征数的特征子集获得了高于或接近于原始特征集的分类结果.同时,在高维特征空间的文本分类领域,与其它的特征选择方法OCFS,DF,CHI,IG等方法的分类结果进行了比较,在20Newsgroup文本数据集上的分类实验结果表明文中提出的方法获得的特征子集在分类时优于其它方法.
崔自峰徐宝文张卫丰徐峻岭
关键词:MARKOVBLANKET
Document classification approach by rough-set-based corner classification neural network被引量:2
2006年
A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and document feature encoding. In the Rough-CC4, the documents are described by the equivalent classes of the approximate words. By this method, the dimensions representing the documents can be reduced, which can solve the precision problems caused by the different document sizes and also blur the differences caused by the approximate words. In the Rough-CC4, a binary encoding method is introduced, through which the importance of documents relative to each equivalent class is encoded. By this encoding method, the precision of the Rough-CC4 is improved greatly and the space complexity of the Rough-CC4 is reduced. The Rough-CC4 can be used in automatic classification of documents.
张卫丰徐宝文崔自峰徐峻岭
共1页<1>
聚类工具0