To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bias and sensor frame tilt errors in multisensor systems with asynchronous data. Simulation results is presented to demonstrate the performance of these approaches. The least squares approach can compress measurements to any time. The Kalman filter algorithm can detect registration errors and use the information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to be fused.
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.
Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisensor systems with a moving platform. Results Simulation results are presented to demonstrate the performance of the approach. Conclusion The Kalman filter algorithm am detect registration errors and use this information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to fused.