A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the huge computing resource requirement is identified as the need to solve the cathode O2 transport and the associated electrochemistry. To overcome the technical obstacle, an analytical model for solving the O2 transport and its coupling with the electrochemistry is derived. The analytical model is used to greatly reduce the numerical mesh complexity of a multiphysics model. Numerical test shows that the analytical approximation is highly accurate and stable. A multiphysics numerical modeling tool taking advantage of the analytical solution is then developed through Fluent@. The numerical efficiency and stability of this modeling tool are further demonstrated by simulating a 30- cell stack with a production scale cell size. Detailed information about the stack performance is revealed and briefly discussed. The multiphysics modeling tool can be used to guide the stack design and select the operating parameters.
The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers of Leu combined with all likely hydration modes. The structures were optimized at the BHandHLYP/6-31+G^* level and the single point energies were calculated at the BHandHLYP/6-311++G^** level. Good correspondence between the conformations of Leu-(H2O)n and bare Leu is found, showing that the conformations of Leu-(H2O)n may be efficiently and reliably determined by the hydration of Leu conformers. The simulated IR spectra of canonical and zwitterionic conformers of Leu-(H2O)n are compared with the experimental result of Leu in aqueous solution. The IR spectrum of zwitterionic Leu- (H2O)3 provides the best description of the experiment. The result demonstrates that the IR spectrum of solute in solution may be simulated by the solute hydrated with an adequate number of water molecules in the gas phase.