An element a of a ring R is called Drazin invertible if there exists b∈R such that ab =ba,bab =b,and a -a2 b is nilpotent.The element b above is unique if it exists and is denoted as aD .The equivalent conditions of the Drazin inverse involving idempotents in R are established.As applications, some formulae for the Drazin inverse of the difference and the product of idempotents in a ring are given.Hence,a number of results of bounded linear operators in Banach spaces are extended to the ring case.