In order to improve the design results for the reconfigurable frequency response masking FRM filters an improved design method based on second-order cone programming SOCP is proposed.Unlike traditional methods that separately design the proposed method takes all the desired designing modes into consideration when designing all the subfilters. First an initial solution is obtained by separately designing the subfilters and then the initial solution is updated by iteratively solving a SOCP problem. The proposed method is evaluated on a design example and simulation results demonstrate that jointly designing all the subfilters can obtain significantly lower minimax approximation errors compared to the conventional design method.
In order to accurately identify speech emotion information, the discriminant-cascading effect in dimensionality reduction of speech emotion recognition is investigated. Based on the existing locality preserving projections and graph embedding framework, a novel discriminant-cascading dimensionality reduction method is proposed, which is named discriminant-cascading locality preserving projections (DCLPP). The proposed method specifically utilizes supervised embedding graphs and it keeps the original space for the inner products of samples to maintain enough information for speech emotion recognition. Then, the kernel DCLPP (KDCLPP) is also proposed to extend the mapping form. Validated by the experiments on the corpus of EMO-DB and eNTERFACE'05, the proposed method can clearly outperform the existing common dimensionality reduction methods, such as principal component analysis (PCA), linear discriminant analysis (LDA), locality preserving projections (LPP), local discriminant embedding (LDE), graph-based Fisher analysis (GbFA) and so on, with different categories of classifiers.