The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reasoning algorithm is given. This algorithm is designed in the style of tableau algorithms, which is usually used in classical description logics. The transformation rules and the process of this algorithm is described and optimized with three main techniques: recursive procedure call, branch cutting and introducing sets of mesne results. The optimized algorithm is proved sound, complete and with an EXPTime complexity, and the satisfiability problem is EXPTime-complete.
A partition of intervals method is adopted in current classification based on associations (CBA), but this method cannot reflect the actual distribution of data and exists the problem of sharp boundary problem. The classification system based on the longest association rules with linguistic terms is discussed, and the shortcoming of this classification system is analyzed. Then, the classification system based on the short association rules with linguistic terms is presented. The example shows that the accuracy of the classification system based on the association rules with linguistic terms is better than two popular classification methods: C4.5 and CBA.
语义Web模糊知识的表示和应用常常涉及模糊隶属度比较,但现有描述逻辑的模糊扩展缺乏描述模糊隶属度比较的能力.提出支持模糊隶属度比较和描述逻辑ALCN(attributive concept description language with complements and number restriction)概念构造子的扩展模糊描述逻辑FCALCN(fuzzy comparable ALCN).FCALCN引入新的原子概念形式以支持模糊隶属度比较.给出FCALCN的推理算法,证明了在空TBox约束下FCALCN的推理问题复杂性是多项式空间完全的.FCALCN能够表达语义Web上涉及模糊隶属度比较的复杂模糊知识并实现对它们的推理.