基于逆磁致伸缩效应,建立钢缆索索力传感器理论模型,分析了施加在缆索材料上的力信号(外力和应变)与磁信号(磁感应强度、磁场强度)之间的耦合关系.针对一种环式结构的索力传感器,对索力测量原理做了详细推导,可通过检测感应线圈的感应电压反映材料所受外力.传感器输出感应电压与空气间隙尺寸、外部激励磁场下的材料磁导率、激励磁场变化、加载外力变化等因素有关,重点分析了激励磁场变化和外力变化对传感器输出的影响.当外力是缓变力,可通过检测感应积分电压求得外力;当外力是交变力,直接通过感应电压求得外力;最后通过对磁场变化和外力变化影响分别进行了仿真,结果与理论分析基本一致,表明所建立的索力传感器理论模型可行.
Abstract:
Based on Villari-effect, the theoretic mdel d the cable tension sensor is presented. The relationship between mechanical parameters such as stress, strain and electromagnetic parameters like magnetic field and magnetic induction field are discussed. One loop-shaped stinulative structure of cable tension sensor based on Villari--effect is proposed and cable tension sensor principle is deeply analysed. By measuring inductive voltage in inductive loops, cable tension stress may be measured. Sensor output may be determined by air clearance, magnetic permeability, magnetic field, stress and inductive loops denseness. The sensor output effects resulting from magnetic field and stress ate analysed respectively. When stress changes tardigradely, the cable tension stress may be measured by measuring inductive integral voltage. When stress changes expeditiously, the cable tension stress may be measured by measuring inductive voltage. Sensor sensibility may be determined by stress frequency, inductive loops denseness, magnetic field and nagnetic permeability. In addition, the sensor output effects from magnetic changing and stress changing have been analysed with emulat