利用Solid Works Simulation和ANSYS APDL对同一实例进行模态分析,验证了ANSYS的准确性和可靠性。在ANSYS中建立了仿生扑翼复合材料模型,分别进行模态和静力分析,探索复合材料不同铺层角度(0°,90°,45°和-45°)对仿生扑翼模型前三阶自然频率和最大应力的影响。在单、双层板中不同铺层角的组合中,得出了前三阶自然频率各自对应的最大和最小固有频率值。在单层板的四个铺层角度中,90°时可得到最小的等效应力和最小的结构变形,最大应力区域集中于前缘梁中部,因此拥有最好的结构性能,为复合材料机翼的优化提供了方法和依据。
To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The method considers the influence of instantaneous wing deforming in flapping,as well as the induced drag,additionally models the stretching and the dissipation of vortex rings,and can present the aerodynamics status on the wing surface. An implementation of the method is developed. Moreover,the results and the efficiency of the proposed method are verified by CFD methods. Considering the less time cost of UVLM,for application of UVLM in the MAV optimization,the influence of wake vortex ignoring time saving and precision is studied. Results show that saving in CPU time with wake vortex ignoring the appropriate distance is considerable while the precision is not significantly reduced. It indicates the potential value of UVLM in the optimization of MAV design.