以五常、常熟和雅安水稻土为研究对象,通过室内泥浆培养,利用基于膜进样质谱仪(Membrane Inlet Mass Spectrometer,MIMS)的15N示踪技术,探究了温度、pH、NO_(3)^(–)浓度、C/N、Fe^(2+)和S2–浓度对三种水稻土反硝化和硝酸根异化还原成铵(Dissimilatory nitrate reduction to ammonium,DNRA)速率及二者占硝酸根还原过程相对贡献的影响。结果表明,在所研究的稻田土壤中,反硝化是NO_(3)^(–)异化还原过程的主导途径,占比87.97%~91.73%,而DNRA仅占8.27%~12.03%。反硝化和DNRA速率随温度升高均呈指数增长,且DNRA占NO_(3)^(–)异化还原的比例(RDNRA)也随温度升高呈增长趋势。反硝化和DNRA速率分别在pH为7或者8.5时最高,相对于碱性环境(4.92%~14.67%),酸性环境中RDNRA(6.24%~15.56%)更高。反硝化和DNRA速率与NO_(3)^(–)浓度之间关系符合米氏方程,且反硝化的最大速率(Vmax)和米氏常数(Km)均大于DNRA。与未加碳源对照组相比,C/N为2.5时,反硝化速率显著提高了22%~35%;C/N大于2.5时,DNRA速率显著提高了74%~199%。三种土壤中,Fe^(2+)添加和S2–添加处理中呈现出类似的趋势,均在低浓度电子供体(即Fe^(2+)和S2–浓度分别为300~500μmol·L^(-1)和50~62.5μmol·L^(-1))时呈现出最高的反硝化速率,而DNRA速率达到峰值则需要更高浓度的电子供体(即Fe^(2+)和S2–浓度分别为800~1000μmol·L^(-1)和100~125μmol·L^(-1))。综上可知,环境因子可显著影响NO_(3)^(–)异化还原过程的速率及分配,其中高温、高C/N、高浓度Fe^(2+)和S2–有利于更多的NO_(3)^(–)分配给DNRA过程,而高浓度NO_(3)^(–)会提高NO_(3)^(–)向反硝化过程的分配。上述研究结果深化了对水稻土NO3–异化还原过程分配的认识,对于探寻潜在农学措施提高DNRA过程的分配比例,进而提高土壤中氮素的固持和提高稻田氮肥利用率具有重要的科学意义。
以麦茬稻田为对象,采用静态箱-气相色谱法对巢湖地区常规施肥、高产施肥、高产施肥+脲酶抑制剂、控失肥4种肥料处理下稻田CH4和N2O的排放进行测定,研究控失肥和脲酶抑制剂两种技术措施对单季稻CH4和N2O排放的综合影响。结果表明:各处理间CH4排放的季节变化模式没有明显不同,但排放量大小有明显差异;高产施肥+脲酶抑制剂与控失肥处理的CH4季节累积排放量分别为28.81 g·m-2和32.68 g·m-2,较常规施肥处理分别减少了25.8%和15.8%,而N2O的季节累积排放量没有明显差异。对CH4和N2O排放的综合温室效应分析表明,高产施肥+脲酶抑制剂与控失肥处理的综合温室效应比常规施肥处理分别降低了2 581.92 kg eqCO2·hm-2和1 561.96 kg eqCO2·hm-2,单位产量的GWP分别减少了29.9%和18.9%,均达到显著性差异。对于巢湖地区单季稻,高产施肥+脲酶抑制剂和控失肥处理对于粮食增产和稻田温室气体减排具有一定的作用。