鉴于传统的BP网络的速度慢和局部极小值问题,以及针对基于实验数据训练神经网络存在样本不足的缺陷,文中提出了利用径向基函数(Rad ial Base Function,简记为RBF)神经网络通过有限元方法对含有脱层损伤的复合材料试件进行数值模拟,把前五阶弯曲模态频率进行修正,以修正后的前五阶弯曲模态频率再经过归一化处理构建训练样本的新思路,将实验模态分析结果经归一化处理后送入训练好的RBF神经网络进行预测,从而实现对编制复合材料梁的脱层损伤定位和损伤程度评估。最后给出了编织复合材料结构损伤大小伤识别及定位的算例,仿真结果表明RBF神经网络速度快,稳定性好,精度高,在复合材料结构损伤监测中具有光明的应用前景和重要的工程应用价值。