A new series of sulfonamide flavone derivatives are designed as non-covalent inhibitors of proteasome assisted with computer-aided drug design (CADD). The desired compounds were synthesized successfully and the biological evaluation was subsequently accomplished. The results showed negligible improvement from our lead compound (IC50 for β5 subunit was 14.0 μM). Thus, these flavone derivatives might be improved as potential 20S proteasome inhibitors.
A series of acyclic analogs of natural product Syringolin A (SylA) were designed and synthesized during our synthetic efforts for SylA. These acyclic analogs were prepared through a seven-step linear strategy, with total yields varying from 20%-34% for one type of analogs and 12%-18% for the other. These compounds bear a common structure of peptidyl vinyl amide, which reacts irreversibly with the proteasomal active site ThrlO^γ through Michael-type 1,4-addition. Therefore, these acyclic analogs may function the same way as SylA, as potential 20S proteasome inhibitors.
A novel series of pyrrolidinone analogs that are designed as Michael addition acceptors to react irreversibly with the proteasome active site Thr1O~γhave been synthesized.Although biological evaluation results show that the compounds display poor inhibitory activity towards the proteasome active sites,pyrrolidinone analogs might still be modified to be potential 20S proteasome inhibitors.