The phase equilibria in Mg-rich corner of Mg-Ca-Gd and Mg-Ca-Nd ternary systems at 400℃ were determined through the equilibrated alloy method by using XRD, SEM, EPMA and DSC. Partial isothermal sections in Mg-rich corner of Mg-Ca-Gd and Mg-Ca-Nd ternary systems at 400 ℃ were constructed from 13 alloys. A three-phase region of a-Mg, Mg41RE5 and Mg2Ca was determined in both ternary systems. It is formed by a similar ternary eutectic reaction L→a-Mg+Mg2Ca+Mg41RE5 at 499.6 ℃ and 505.6 ℃, respectively. It is found that the maximum solubility of Ca in Mg5Gd is 3.68% (molar fraction) and 3% of Gd can be dissolved in Mg2Ca in the Mg-Ca-Gd system at 400 ℃. While in the Mg-Ca-Nd system, the maximum solubility of Ca in Mg41Nd5 is 3.57% and 1.24% of Nd can be dissolved in Mg2Ca at 400 ℃. Other three-phase equilibria existing in Mg-rich corner of Mg-Ca-Gd system are a-Mg+MgsGd+T and MgsGd+Mg2Ca+T and the three-phase equilibrium in Mg-rich corner of Mg-Ca-Nd system is Mg3Nd+Mg2Ca+ Mg41Nd5.