On-line Cu (II) ion concentration detection in bioleaching system was achieved by anodic stripping differential pulse voltammetry (ASDPV). Good linearity between Cu (II) concentration and oxidation peak current was obtained when Cu (II) existed in 0K media in the concentration range of 1μmol/L (64μg/L) to 1 mmol/L (64 mg/L). Moreover, when 0.2 mol/L KCl was added into this media, the linear detection range could be extended from 1 mmol/L to 100 mmol/L (6.4 g/L). The reduction of Cu (II) to metallic copper was shown to proceed as two successive single-electron transfer reactions involving an intermediate chemical step where the cuprous ion (Cu+) was complexed by chloride to form the dichlorocuprous anion (CuCl-). In addition, interference effect was also investigated when Fe3+existed in the media, which was the common situation in the copper bioleaching system. The results showed no interference effect once the concentration of Fe3+was less than 100 mmol/L (5.6 g/L).
针对传统LED灯杆在远程监控、自动巡检、实时单灯调控、故障定位处理等方面存在的问题,本文提出基于窄带物联网(narrow band internet of things,NB-IoT)技术的智能LED灯杆监控系统的研制方案,采用STM32L151单片机作为主控芯片,控制多种传感器采集路灯信息,通过NB-IoT模块与核心网的连接,将采集到的路灯信息上传至OneNET云平台,并开发移动端应用程序(application,APP)和个人计算机(personal computer,PC)端监测界面以实现路灯故障信息的实时获取。实验结果显示:所研制的系统可以实时监测、控制路灯,快速、准确地确定故障路灯位置,实现单灯控制。