以四氯化钛为无机钛源,十六烷基三甲基溴化铵为模板剂,通过水热合成法制得无机物钛前驱体溶液.以导电碳毡(CCF)为载体,在超声波辅助下用浸渍提拉法负载钛前驱体,通过高温煅烧得到介孔二氧化钛/导电碳毡(MPT/CCF)光电极材料,对样品的结构进行了表征,并以室内污染物气相苯甲醛为目标降解物,通过评价不同煅烧温度和不同负载次数下MPT/CCF的光电催化性能优化了MPT/CCF的制备工艺条件,探讨了催化降解条件(温度、湿度、偏电压)对协同增效机制的影响.结果表明,相对于纯介孔二氧化钛(MPT),MPT/CCF具有较小的粒径尺寸、更大的比表面积和较均匀的孔径分布,这归功于CCF对晶粒生长的抑制作用.其中负载2次MPT并在500℃下煅烧的2-MPT/CCF-500样品具有最高的光电催化活性,主要是由于其具有完善的晶型、均匀的介孔分布和高浓度的羟基自由基,并且在重复使用过程中也具有很高的光电催化活性.最佳的催化条件为温度35℃、相对湿度55%、偏电压10 V.
Ordered mesoporous TiO2 (OMPT) was prepared by an evaporation induced self-assembly technique using liquid crystal as template. The key factors affecting the methylene blue (MB) oxidation efficiency were investigated, including the initial concentration of MB, pH value and catalyst concentration. The results show that the obtained OMPT has high thermal stability and shows a 2D hexagonal mesostructure with the small particle size and high surface area, which lead to higher degradation efficiency than commercial P25 or nanoparticle TiO2 (NPT) fabricated by sol-gel process. The optimal conditions are 5 mg/L MB, pH 6 and 1.5 g/L OMPT for the fastest rate of MB degradation. Total organic carbon (TOC) analysis indicates complete mineralization of MB in 240 min by OMPT, with rate constant higher than NPT or P25.
以十六烷基三甲基溴化铵(CTAB)表面活性剂和钛酸四丁酯分别为造孔模板和钛源,通过超声辅助溶剂挥发自组装技术制备有序介孔氧化钛(ordered mesoporous Ti O2,OMPT)及其活性炭负载体(ordered mesoporous Ti O2/AC,OMPTA).为探讨OMPTA结构与性能之间的关系,采用超声辅助溶胶-凝胶技术合成了无孔氧化钛/活性炭(nonporous Ti O2/AC,NPTA)负载体,利用热重-差热(TG-DTA)、X射线衍射(XRD)、氮气吸附-解吸、透射电子显微镜(TEM)和紫外漫反射(DRS)等手段对制备材料结构进行表征.以酸性红B(acid red B,ARB)的光催化降解为探针实验,评价OMPTA的光催化性能和使用寿命,提出了孔-孔协同光催化扩增机制,并探讨了催化条件(染料浓度、催化剂浓度和溶液p H)对协同扩增效果的影响.结果表明:相对于纯OMPT,OMPTA具有晶粒生长的高活化能、较小的粒径尺寸和对有序介孔结构的高热稳定性,这归功于活性炭的吸附力和非晶相层对晶粒生长的阻碍作用.由于孔-孔协同光催化扩增效应,导致OMPTA在NPTA、OMPT-AC、OMPT、P25和NPT中具有更高的催化活性.热处理温度强烈影响OMPTA的光催化活性,其中OMPTA-500具有最高的光催化活性,这归功于其具备完善的结晶性、相对高浓度的羟基和Ti3+离子.同时,OMPTA-500在重复使用过程中也具有很高的光催化性能.当使用OMPTA-500为催化剂对ARB降解时,最佳的催化条件为催化剂浓度1 g/L,ARB浓度15 mg/L,p H 5.