The as-cast Mg-8Li-3Al-0.5Mn-xSr(LAM830-xSr, x=0-1.0) alloys were designed and prepared in a vacuum induction furnace under controlled argon atmosphere. The alloys were then processed by hot extrusion, and their microstructural evolution and mechanical properties were analyzed. Results indicate that the LAM830 alloy mainly consists of α-Mg, β-Li, Al2Mn3, and LiMgAl2 phases. Sr addition results in the precipitation of Al-Sr. Moreover, Sr addition results in a fact that the secondary dendrite arm spacing(DAS) of the primary α-Mg phase is obvious refined. Microstructure of the investigated alloys is further refined as a result of the hot extrusion treatment. The content and morphology of the secondary phases have important effects on the mechanical properties of the alloys. The as-extruded LAM830-0.5Sr alloy exhibits an optimal elongation of 22.43% and as-extruded LAM830-0.75 Sr alloy shows an optimal tensile strength of 265.46 MPa.