云滴谱离散度是云雨自动转化过程参数化中不可忽视的重要参数,对地面降水有着重要的影响。本文利用WRF-Chem(Weather Research and Forecast coupled with Chemistry)模式,对发生在2019年1月3~6日长江中下游地区的一次降水过程进行了模拟。在清洁和污染的气溶胶背景下,设定不同的云滴谱离散度的数值(0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1.0),研究云降水微物理的变化。结果表明,该个例降水主要来源于云雨自动转化以及云雨碰并过程。在清洁条件下的地面累计降水量大于在污染条件下的累计降水量,这是因为在清洁条件下云滴数浓度小,有利于云雨自动转化以及云雨碰并过程。虽然云雨自动转化以及云雨碰并过程占主导,但导致地面累计降水量随云滴谱离散度增大而增大的主要原因是:随着云滴谱离散度的增大,冰粒子质量浓度增大,导致融化过程增强,产生更多的雨滴,从而增强地表降水。所得结果将提高我们对云降水对气溶胶和离散度响应过程的理论认识。
由于云的时空尺度非常宽广,云微物理参数化方案一直是气候模式中的薄弱环节.本文借鉴中尺度模式云微物理方案从双参数向三参数扩展的思路方法,发展了联合地球系统模式(Community Integrated Earth System Model,CIESM)三参数冰相云微物理方案,弥补了默认双参数方案不能预报冰晶粒径分布谱形参数(μ)的不足,进而分析了双、三参数方案对气候模拟的影响.模拟结果表明,相较于双参数方案(μ为0),三参数方案预报得出的μ更为合理,其在垂直分布上整体呈现出“高层小低层大”的特点,高层的低值主要是由于冰晶核化以及较大的冰晶粒子沉降后粒子之间相互混合导致的,而低层的高值主要是由于冰晶粒子在沉降过程中的粒子分选机制导致的.与双、三参数方案中μ的差异相呼应,模式模拟的气候平均态出现明显差异,其中三参数方案模拟的总云云量、低云云量、中云云量和总降水相较于双参数方案更接近观测结果,高云云量的误差增大.其中总降水的改进主要是由于高云云量的增加,大气稳定度增加,对流性降水减少.此外,还调整了相关参数,以改善模式对辐射的模拟能力.总之,本文在全球气候模式中评估了双、三参数方案对于模拟气候平均态的不同影响,为气候模式中云微物理方案的发展改进提供了一定的参考意义.
本文使用中尺度数值模式WRF(Weather Research and Forecasting Model)模拟了2010年7月8—9日发生在四川盆地的一次西南涡降水天气过程,并计算该过程中零度层以下对流云中的夹卷率。从云内垂直特征看:云内的含水量、垂直风速和浮力都在云底之上随高度递增,而在云顶附近随高度递减;云内的湿静力能则主要随高度递减;夹卷率在云底以上随高度递减,而在云顶附近随高度递增,但是云顶高度越高,在云顶附近的递增趋势越不明显。另外,夹卷率和云内的云水、雨水含量都呈负相关,说明夹卷抑制了对流云的发展以及地面降水。当假设被夹卷的环境空气来自云边界附近时,计算所得的夹卷率值要大于假设夹卷空气远离云边界所得值,但这两种假设中夹卷率的其他特征是类似的。从演变特征看,夹卷率总体上随时间减小,这和这段时间内对流云整体发展增高有关。