您的位置: 专家智库 > >

李峰

作品数:11 被引量:89H指数:5
供职机构:同济大学电子与信息工程学院计算机科学与技术系更多>>
发文基金:国家自然科学基金国家教育部博士点基金北京市重点实验室更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 7篇期刊文章
  • 3篇会议论文

领域

  • 9篇自动化与计算...

主题

  • 7篇粗糙集
  • 2篇多标记
  • 2篇噪声
  • 2篇噪声图像
  • 2篇属性约简
  • 2篇图像
  • 2篇图像分割
  • 2篇粒化
  • 2篇粒计算
  • 2篇邻域粗糙集
  • 2篇互信息
  • 2篇半监督学习
  • 1篇对等网
  • 1篇多标记学习
  • 1篇信任
  • 1篇信任模型
  • 1篇学习算法
  • 1篇约简算法
  • 1篇知识获取
  • 1篇属性约简算法

机构

  • 10篇同济大学
  • 4篇上海电力学院
  • 2篇深圳大学
  • 2篇香港理工大学
  • 1篇江西农业大学

作者

  • 10篇李峰
  • 8篇苗夺谦
  • 5篇张维
  • 2篇张志飞
  • 2篇高灿
  • 1篇田春岐
  • 1篇刘财辉
  • 1篇胡治国
  • 1篇余鹰
  • 1篇江建慧
  • 1篇杨伟

传媒

  • 2篇小型微型计算...
  • 1篇计算机研究与...
  • 1篇计算机学报
  • 1篇计算机科学
  • 1篇智能系统学报
  • 1篇计算机科学与...

年份

  • 1篇2018
  • 2篇2017
  • 1篇2016
  • 4篇2014
  • 1篇2013
  • 1篇2010
11 条 记 录,以下是 1-10
排序方式:
WilsonTh数据剪辑在邻域粗糙协同分类中的应用研究
结合邻域粗糙集和协同学习理论构建的邻域粗糙协同分类模型可以处理连续型数据并可有效利用无标记数据提高分类的性能.在迭代学习过程中,分类器给无标记数据加上类别标记以扩大训练集使分类器再训练能获得更好的性能.然而无标记样本常被...
张维苗夺谦李峰
关键词:邻域粗糙集
基于决策粗糙集的图像分割方法研究
图像分割是图像处理和图像分析中的重要研究内容之一。目前的研究大多集中在处理比较理想、不带噪声的图像,而现实中的图像往往是带有噪声的,并且图像中物体之间的边界灰度值常常是模糊的。针对带噪声的图像,在粒计算和决策粗糙集的框架...
李峰苗夺谦刘财辉杨伟
关键词:图像分割噪声图像
一种标记粒化集成的多标记学习算法被引量:2
2018年
问题转化型方法和算法适应型方法是多标记学习中主要的两类研究方法,其中问题转化型方法因其独立分类算法得到了广泛的关注,而已有的问题转化型方法存在或忽略标记间相关性,或算法复杂过高,或算法性能不稳定的问题.针对上述不足,基于粒计算的思想,本文提出了一种粒化集成的多标记学习算法.该算法为每个标记划分出一个相关性最大的标记子集,称为关系粒,将标记空间粒化为多个标记子集,该方式考虑到并最大化保留了标记间的相关性,避免了算法复杂度过高,提升了算法性能.随后为每个关系粒训练一个分类模型,最终将各个分类模型的结果集成.实验结果表明相较于对比的三种方法,本文所提算法能取得较好的性能.
李峰苗夺谦张志飞罗晟
关键词:粒计算多标记学习互信息
多标记决策系统知识获取的粗糙集方法
粗糙集理论已有的研究工作主要集中在单一决策系统的研究上,对于多决策系统是直接分解成多个单一决策系统。直接变换的方法忽视了决策属性之间的相关性和共现性,影响决策分类的精度。本文基于粗糙集模型,分别提出了离散型多标记决策系统...
余鹰苗夺谦赵才荣李峰
关键词:多标记粗糙集决策系统
基于互信息的粒化特征加权多标签学习k近邻算法被引量:22
2017年
传统基于k近邻的多标签学习算法,在寻找近邻度量样本间的距离时,对所有特征给予同等的重要度.这些算法大多采用分解策略,对单个标签独立预测,忽略了标签间的相关性.多标签学习算法的分类效果跟输入的特征有很大的关系,不同的特征含有的标签分类信息不同,故不同特征的重要度也不同.互信息是常用的度量2个变量间关联度的重要方法之一,能够有效度量特征含有标签分类的知识量.因此,根据特征含有标签分类知识量的大小,赋予相应的权重系数,提出一种基于互信息的粒化特征加权多标签学习k近邻算法(granular feature weighted k-nearest neighbors algorithm for multi-label learning,GFWML-kNN),该算法将标签空间粒化成多个标签粒,对每个标签粒计算特征的权重系数,以解决上述问题和标签组合爆炸问题.在计算特征权重时,考虑到了标签间可能的组合,把标签间的相关性融合进特征的权重系数.实验表明:相较于若干经典的多标签学习算法,所提算法GFWML-kNN整体上能取得较好的效果.
李峰苗夺谦张志飞张维
关键词:互信息粒化K-近邻
一种基于聚集超级节点的P2P网络信任模型被引量:43
2010年
针对对等网(Peer-to-Peer,P2P)中节点之间由于兴趣爱好差异大、相互发生重复交易的可能性较小从而难以有效建立信任关系的现状,文中提出一种新的基于超级节点的P2P网络信任模型.该模型中节点以兴趣相似而聚簇,节点之间信任关系被划分为3种类型并被给予了各自的解决方案.同时,对于推荐信任信息中存在的虚假的、误导性的和不公正反馈的问题,文中还提出基于节点相似性的反馈信息过滤算法予以有效解决.最后的仿真实验结果表明,该信任模型不但具有抗恶意节点攻击的强壮性,同时在资源查询时具有较低的查询开销和失败率.
田春岐江建慧胡治国李峰
关键词:对等网信任
基于决策粗糙集的图像分割被引量:9
2014年
图像分割是图像处理和图像分析中的重要研究内容之一。目前的研究大多集中在处理比较理想、不带噪声的图像,而现实中的图像往往是带有噪声的,并且图像中物体之间的边界灰度值常常是模糊的。针对带噪声的图像,在粒计算和决策粗糙集的框架下,提出了一种新的图像分割方法。该方法用决策粗糙集思想模拟目标和背景区域,在求取近似集时容忍部分噪声点的存在,通过优化目标和背景区域的粗糙度,获得分割的阈值。实验结果表明该方法能较好地处理带噪声的图像。
李峰苗夺谦刘财辉杨伟
关键词:图像分割噪声图像粒计算
基于粗糙集成学习的半监督属性约简被引量:6
2016年
属性约简是粗糙集理论重要研究内容之一.Pawlak粗糙集约简的对象一般是有监督数据或者是无监督数据.而在很多现实问题中有标记数据很有限,更多的是无标记数据,即半监督数据.仅利用有标记数据一般难以计算出质量较好的属性约简.为此,基于粗糙集理论,结合集成学习与半监督学习,提出有效地利用无标记数据计算半监督数据属性约简算法.该算法在有标记数据上构造一组差异性较大的属性约简构造集成基分类器,在半监督自训练学习过程中,用集成分类器对无标记数据做出预测,扩大有标记数据集,从而获得质量更好的约简.UCI数据集实验分析表明该算法是有效可行的.
张维苗夺谦高灿李峰
关键词:属性约简粗糙集半监督学习
WilsonTh数据剪辑在邻域粗糙协同分类中的应用被引量:2
2014年
邻域粗糙协同分类模型结合了邻域粗糙集和协同学习理论,可以处理连续型数据,并可有效利用无标记数据提高分类的性能。但在学习过程中,无标记数据常被错误地标记,从而给训练集引入噪声数据,并导致分类性能不稳定。针对该问题,探讨了WilsonTh数据剪辑在邻域粗糙协同分类模型中的应用。在每一次迭代学习过程中,分类器给无标记数据加上类别标记后,应用WilsonTh数据剪辑选出最大可能标记正确的样本加入训练集,分类器在扩大的训练集上再训练以获得更好的性能。UCI数据集上实验结果表明,WilsonTh数据剪辑能有效地提高加入训练集的数据质量,从而增强邻域粗糙协同分类的性能。
张维苗夺谦李峰
关键词:邻域粗糙集
一种处理部分标记数据的粗糙集属性约简算法被引量:5
2017年
属性约简是粗糙集理论中重要的研究内容之一,是数据挖掘中知识获取的关键步骤。Pawlak粗糙集约简的对象一般是有标记的决策表或者是无标记的信息表。而在很多现实问题中有标记数据很有限,更多的是无标记数据,即半监督数据。为此,结合半监督协同学习理论,提出了处理半监督数据的属性约简算法。该算法首先在有标记数据上构造两个差异性较大的约简来构造基分类器;然后在无标记数据上交互协同学习,扩大有标记数据集,获得质量更好的约简,构造性能更好的分类器,该过程迭代进行,从而实现利用无标记数据提高有标记数据的约简质量,最终获得质量较好的属性约简。UCI数据集上的实验分析表明,该算法是有效且可行的。
张维苗夺谦高灿李峰
关键词:粗糙集半监督学习
共1页<1>
聚类工具0