为了研究高频纳秒脉冲电场(ns PEFs)杀伤肿瘤细胞的机理,结合笛卡尔传输网格(CTL)和动态电穿孔等效电路模型对1个典型的2维多细胞系统在ns PEFs作用下的穿孔特性进行了仿真。利用Pspice仿真软件建立了该多细胞系统电路模型,并分析了其穿孔数量和穿孔半径变化特性。首先施加了10个场强、频率和脉宽分别为5k V/cm、1 MHz和500 ns的高频纳秒脉冲到该多细胞系统模型,结果表明随脉冲个数增加穿孔区域分布变化不大,而穿孔半径分布有明显的累积效应,细胞外膜和细胞核膜上部分孔的半径逐渐增大。同时比较了电场强度为3、5和10 k V/cm时该系统中穿孔数量和最大孔径随脉冲个数增加的变化情况。结果显示场强增加时穿孔数量明显增加,特别是场强从3 k V/cm提高到10 k V/cm时,系统整个细胞核膜从未穿孔到穿孔数量增加到2.658 4×105个。另外,穿孔半径仍然存在累积效应。仿真结果说明适当参数的高频ns PEFs能使细胞核膜发生穿孔,并起到扩大细胞部分穿孔半径的作用,可为后续实验研究选择高频纳秒脉冲参数提供依据。
为了在利用脉冲注入法在线检测电力变压器绕组变形故障时能正确处理暂态信号,获取绕组的脉冲频率响应曲线,避免绕组变形状态的误判,提出了基于短时Fourier变换的脉冲频率响应曲线获取新方法,对该方法的基本原理进行了理论推导。然后,从理论推导入手,构建了单绕组仿真模型,结合PSPICE和MATLAB进行了联合仿真分析。仿真结果表明该仿真模型下经过短时Fourier变换的频率响应曲线谐振频率位于2 MHz,接近传统正弦频率响应曲线的谐振频率,初步证实了该方法的正确性。最后开展了110 k V变压器试验测试,分别用快速Fourier变换(FFT)和短时Fourier变换(STFT)处理了测试数据,采用相关系数指标进行了分段评判。试验结果表明经过短时Fourier算法处理后,绕组间频率响应曲线相关系数均>3,频率响应曲线清晰度较高,比快速Fourier变换处理效果更好。仿真分析与试验测试的数据处理结果均表明了该方法的可行性和优越性。