深入理解青藏高原上空大气非绝热加热三维结构,有助于揭示高原热动力效应和机械强迫效应在亚洲夏季风系统中的作用机理.然而现有的高原非绝热加热率资料存在较大不确定性.本文详细比较了NCEP和ERA40再分析资料"残差诊断法"计算的大气非绝热加热数据,分析两种资料所反映的高原上大气非绝热加热的时空分布特点,重点比较了二者在高原南麓的差异,并结合TRMM PR降水和潜热资料分析了差异的可能原因.研究发现两种资料之间的差异在夏季最大:ERA40在高原南麓高海拔地区所诊断的非绝热加热显著大于NCEP.ERA40大气强加热区域从高原南部山脚向北延伸、越过海拔4000位势米直至高原主体的南部;而相应NCEP大气强加热区主要位于高原南麓低海拔地区,不超过海拔4000位势米界限.上述差异不仅限于贴地层(地表感热的直接影响区域),而在400~500 h Pa大气层也很显著.同时发现,ERA40所估计的夏季高原南麓降水显著大于NCEP和TRMM PR的观测,这种差异在时间、空间上都与非绝热加热的差异相吻合.这说明降水所释放的潜热是造成上述差异的主要原因.分析大气加热场和大气环流的经向垂直剖面发现,ERA40在南麓高海拔地区所诊断的大气非绝热加热可向上延伸至对流层高层~300 h Pa,而相应NCEP大气非绝热加热主要集中在较低大气层,相应ERA40诊断的大气垂直上升速度明显强于NCEP,200 h Pa的水平辐散也较强.高原南麓深对流降水及其潜热的不确定性是充分理解高原-大气相互作用的主要难点.
对星载Ku, Ka和W波段微波雷达联合观测中纬度陆地气旋、热带台风和热带洋面气旋个例中云和降水的三维结构进行了模拟仿真.首先利用Weather Research and Forecasting(WRF)云模式模拟了个例中各种水凝物的时空分布,并利用Aqua卫星MODIS观测结果直接检验了中纬度陆地气旋个例模拟结果;然后将模拟结果作为输入,利用星载雷达模拟器计算了相应的雷达回波反射率因子,并利用CloudsSat卫星的W波段云雷达CPR实测信号对之进行了验证;随后利用该模拟数据研究了不同粒子雷达回波反射率的特点.最后假设Ku,Ka和W波段雷达的灵敏度分别为15, 5和-35 dBZ,定量研究了这3个波段在探测云顶高度、云底高度上的优缺点和误差大小.模拟结果证实随着频率的增高,水凝物粒子的雷达回波反射率因子减小.非降水云水和云冰粒子回波明显弱于降水和降雪粒子,一般很难被Ku和Ka波段星载雷达观测到.研究发现W波段雷达对云顶的探测误差一般很小(不到30 m),而Ku,Ka雷达对云顶的探测误差可达数千米.对云底探测而言,W波段雷达可以有效穿透低层液态水含量低的天气系统,但对强降水天气系统云底探测误差较大;Ka波段雷达在台风眼壁云墙附近的强降水区也会出现较大探测误差;而Ku波段雷达云底的探测误差都较小.