方面级情感分类是一种细粒度的情感分析任务,旨在分类出文本中不同方面的情感。目前,现有方面级情感分类模型存在特征提取层次浅、泛化能力弱等问题。为此,该文提出一种基于融合对抗网络的方面级情感分类模型ASFAN(Aspect-level Sentiment classification model based on Fusion Adversarial Networks)。首先,从数据集中提取文本的方面词、位置、上下文信息表示。其次,将方面词、位置、上下文信息通过BERT编码。最后,通过多头注意力和局部注意力机制提取文本特征,将特征进行融合学习。此外,通过对抗学习算法生成对抗样本,将对抗样本作为一种文本数据增强样本,优化决策边界。实验结果表明,在SemEval 2014的Restaurant、Laptop数据集和ACL-2014的Twitter数据集上,ASFAN的准确率分别达86.54%、79.15%、76.16%,ASFAN对比大多数基线模型性能提升显著。
基于片段的药物设计(Fragment-Based Drug Design,FBDD)是药物研发的主流方法之一。如何高效从海量药物大数据中筛选出具有相似分子片段的药物小分子成为生物化学研究领域的挑战性问题。针对目前人工筛选耗时长、效率低、药物筛选周期长等问题,提出一种基于2D模型的药物小分子筛选方法(SMS-2D)。利用计算机自动化筛选出与目标分子片段具有相似片段的药物小分子。实验结果表明:SMS-2D方法能高效地筛选出包含与分子片段具有相似片段的小分子。
为了解决海量电商评价信息中每个评价对象的情感倾向性和评价对象与评价词不匹配问题,提出一种结合句法关系与语义关系的多粒度条件随机场模型抽取评价单元方法SSMCRFs(syntactic semantic and multi-grained conditional random fields,SSMCRFs).首先,爬取京东商城的评论数据为基础数据,将评论文本进行句法关系,语义关系等处理;然后,使用TF-IDF算法对预处理后的数据集进行统计分析,以确定用户的关注度;最后,使用条件随机场模型进行评价单元识别.实验结果表明,SSMCRFs在识别评价单元上准确率达到92.92%,召回率达到93.25%,F值达到93.08%.相对于马晓君等(2017)的方法,SSMCRFs方法在准确率,召回率,F值上均有较大的提高.