In this paper, a fully discrete format of nonlinear Galerkin mixed element method with backward one-step Euler discretization of time for the non stationary conduction-convection problems is presented. The scheme is based on two finite element spaces XH and Xh for the approximation of the velocity, defined respectively on a coarse grid with grids size H and another fine grid with grid size h<< H, a finite element space Mh for the approximation of the pressure and two finite element spaces AH and Wh, for the approximation of the temperature,also defined respectivply on the coarse grid with grid size H and another fine grid with grid size h. The existence and the convergence of the fully discrete mixed element solution are shown. The scheme consists in using standard backward one step Euler-Galerkin fully discrete format at first L0 steps (L0 2) on fine grid with grid size h, but using nonlinear Galerkin mixed element method of backward one step Euler-Galerkin fully discrete format through L0 + 1 step to end step. We have proved that the fully discrete nonlinear Galerkin mixed element procedure with respect to the coarse grid spaces with grid size H holds superconvergence.