针对化工生产中广泛存在的一类带多工序的异构并行机调度问题,即部分产品需多工序加工,同时不同产品间带序相关设置时间的异构并行机调度问题(heterogeneous parallel machine scheduling problem with multiple operations and sequence-dependent setup times,HPMSP_MOSST),提出了一种遗传-分布估计算法(genetic algorithm-estimation of distribution algorithm,GA-EDA),用于优化最早完工时间(makespan)。首先,提出了一种基于GA的概率模型训练机制,用来提高概率模型在算法进化初期的信息积累量,进而提高搜索的效率;其次,设计了一种有效的GA与EDA混合策略,使得算法的全局探索和局部开发能力得到合理平衡。计算机模拟验证了GA-EDA的有效性和鲁棒性。
针对求解带软时间窗车辆路径问题(Vehicle routing problem with soft time windows,VRPSTW),提出一种改进的种群增量学习算法(Improved population-based incremental learning algorithm,IPBIL)优化运输总成本。提出一种新型的3维种群增量学习模型引导算法执行全局搜索,发现解空间中的优质解区域;设计一种基于客户间距离和惩罚成本相关度的交换操作进一步提高解的质量;提出一种关于时间窗问题性质的插入和逆转操作,对优质解区域进行细致搜索。最后,通过仿真实验和算法比较,验证了该文所提出的IPBIL的有效性。