An element a of a ring R is called uniquely strongly clean if it is the sum of an idempotent and a unit that commute, and in addition, this expression is unique. R is called uniquely strongly clean if every element of R is uniquely strongly clean. The uniquely strong cleanness of the triangular matrix ring is studied. Let R be a local ring. It is shown that any n × n upper triangular matrix ring over R is uniquely strongly clean if and only if R is uniquely bleached and R/J(R) ≈Z2.