为提高特高压直流换流阀塔绝缘可靠性、实现小安全裕度下换流阀绝缘的优化设计,以±1 100 k V直流换流阀作为研究对象,采用Solid Works及ANSYS混合建模技术,建立了换流阀塔的3维模型。对该模型进行单阀绝缘型式试验及多重阀直流耐压试验,得到其电场分布;并针对电场薄弱环节进行局部结构优化。研究结果表明:当选取2 700 k V/m作为换流阀厅内金具表面工作控制电场强度时,单阀绝缘型式试验中的屏蔽罩及横梁均存在电场薄弱环节,有可能产生电晕及放电现象;而多重阀直流耐压试验中不存在电场薄弱环节,不会产生电晕及放电现象。此外,增加横梁拐角、屏蔽罩侧边的倒角值以及在层间绝缘金具处添加均压环可以使得薄弱处电场强度低于控制值。
饱和电抗器是保护晶闸管的重要设备,其失效将威胁换流阀的安全运行。为提高特高压直流换流阀的可靠性,必须研究饱和电抗器的失效模式及其平均使用寿命。首先,研究了特高压直流换流阀饱和电抗器在额定运行工况下承受的电气和热应力;然后,分析了饱和电抗器在各种应力条件下的失效模式,并且找出了决定饱和电抗器失效的主要应力形式和部件;最后,基于环氧树脂的热加速寿命试验预计了饱和电抗器的平均使用寿命。结果表明:环氧树脂是饱和电抗器的薄弱环节,铁芯发热造成环氧树脂的温升是限制饱和电抗器寿命的主要因素;±1 100 k V换流阀饱和电抗器的平均使用寿命约为48 a,满足国家电网公司对饱和电抗器产品的可靠性要求。
为了降低电网换相高压直流输电(line-commutatedconverter high voltage direct current,LCC-HVDC)的换相失败概率,提出一种LCC-HVDC改进拓扑。该拓扑从增大换流阀换相电压的角度出发,在原阀臂中串联接入新型可控子模块,以辅助换相。首先介绍该拓扑中子模块的3种工作状态,并分析子模块开关管的电压和电流。然后设计改进拓扑的控制策略,提出"最优充电初始电压"这一概念,并对其进行优化计算。PSCAD/EMTDC仿真结果表明,该拓扑能灵活切换子模块的工作状态,提高了LCC-HVDC防御换相失败的能力;所提出"最优充电初始电压"的优化计算方法效果良好,对该拓扑的换相失败防御能力有进一步的提升作用。
基于±800 k V特高压换流站设备可靠性和经济性的综合考虑,提出一种新的避雷器配置方案,该方案提出在换流站直流侧配置M2避雷器,让其与V3避雷器串联代替交流侧A2避雷器泄放能量。采用平波电抗器分别配置在极线和400 k V直流母线上的方式,同时去掉了CB1B避雷器和E1H高能量避雷器。通过对比典型的±800 k V特高压换流站避雷器配置方案和该经济配置方案,论述了经济配置方案优化经济性的原因,并根据避雷器直流参考电压的选择原则给出了一个参数选择方案。该文所介绍的避雷器配置方案和所选用的避雷器参数对±800 k V特高压DC输电工程具有一定的指导作用。
采用故障树(fault tree analysis,FTA)法分析UHVDC系统可靠性及灵敏度。考虑多状态元件同站双极互为备用逻辑关系,建立所有故障方式的故障树。基于串、并联结构,分别建立FTA和状态空间(state space,SS)可靠性分析模型。发现FTA误差,源于对串联系统不当引入多个元件同时故障状态。分别采用FTA和SS法计算UHVDC系统状态概率和灵敏度,量化前者误差。结果证实FTA得到的不可用率确实较SS法偏高,误差与元件个数及元件可用度有关。发现系统故障概率对同一元件修复率和安装率的绝对灵敏度之比,为其安装率和修复率之比的平方,同一元件所有参数相对灵敏度之和为0,据此可大幅降低灵敏度分析计算量。