Let G be a finite group, and S be a subset of G. The bi-Cayley graph BCay(G, S) of G with respect to S is defined as the bipartite graph with vertex set G x {0,1} and edge set {(g,0), (gs, 1)1 g ε G, s εS}. In this paper, we first provide two interesting results for edge-hamiltonian property of Cayley graphs and bi-Cayley graphs. Next, we investigate the edge^hamiltonian property of F = BCay(G, S), and prove that F is hamiltonian if and only if F is edge-hamiltonian when F is a connected bi-Cayley graph.
The technology of Ultra-High Voltage (UHV) transmission requires higher dependability for electric power grid. Power Grid Communication Networking (PGCN), the fundamental information infrastructure, severs data transmission including control signal, protection signal, and common data services. Dependability is the necessary requirement to ensure services timely and accurately. Dependability analysis aims to predicate operation status and provide suitable strategies getting rid of the potential dangers. Due to the dependability of PGCN may be affected by external environment, devices quality, implementation strategies, and so on, the scale explosion and the structure complexity make the PGCN's dependability much challenging. In this paper, with the observation of interdependency between power grid and PGCN, we propose an electricity services based dependability analysis model of PGCN. The model includes methods of analyzing its dependability and procedures of designing the dependable strategies. We respectively discuss the deterministic analysis method based on matrix analysis and stochastic analysis model based on stochastic Petri nets.
Jiye WangKun MengJunwei CaoZhen ChenLingchao GaoChuang Lin