您的位置: 专家智库 > >

国家自然科学基金(61304230)

作品数:6 被引量:64H指数:3
相关作者:王胜正赵建森胡媛刘卫更多>>
相关机构:上海海事大学上海海洋大学江汉大学更多>>
发文基金:国家自然科学基金上海市教育委员会创新基金博士科研启动基金更多>>
相关领域:交通运输工程电子电信自动化与计算机技术天文地球更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 3篇交通运输工程
  • 2篇电子电信
  • 1篇天文地球
  • 1篇自动化与计算...
  • 1篇一般工业技术

主题

  • 2篇船舶
  • 1篇导航
  • 1篇导航卫星
  • 1篇导航卫星系统
  • 1篇导航信号
  • 1篇信号
  • 1篇散度
  • 1篇神经网
  • 1篇神经网络
  • 1篇凸函数
  • 1篇全球导航卫星...
  • 1篇自动舵
  • 1篇网络
  • 1篇卫星
  • 1篇卫星导航
  • 1篇卫星导航信号
  • 1篇卫星系统
  • 1篇海上交通
  • 1篇函数
  • 1篇反向传播算法

机构

  • 3篇上海海事大学
  • 1篇江汉大学
  • 1篇上海海洋大学

作者

  • 2篇王胜正
  • 1篇赵建森
  • 1篇刘卫
  • 1篇胡媛

传媒

  • 2篇Journa...
  • 1篇计算机应用
  • 1篇高技术通讯
  • 1篇现代电子技术
  • 1篇Journa...

年份

  • 1篇2019
  • 1篇2018
  • 2篇2017
  • 1篇2016
  • 1篇2014
6 条 记 录,以下是 1-6
排序方式:
基于黄金分割法的卫星导航信号镜面反射点预测研究被引量:5
2016年
针对利用全球导航卫星系统(GNSS)反射信号进行遥感时镜面反射点位置获取精度低、迭代次数多、计算速度慢的问题,提出了基于黄金分割法预测镜面反射点的预测方法。研究了镜面反射点的特性及其几何关系,通过计算仿真,发现镜面反射点预测是一维单谷凸函数极值搜索问题。将卫星发射机和接收机的位置作为搜索区间,根据黄金分割法的搜索原则插入新的搜索点,依照路径最短原则逐步缩小搜索区间来获取镜面反射点的位置。实验仿真结果表明,所提出的算法具有精度高、反射路径最短、迭代次数少、收敛效率高以及运算速度快的特点。
胡媛刘卫
关键词:凸函数
A drifting trajectory prediction model based on object shape and stochastic mo-tion features被引量:4
2014年
There is a huge demand to develop a method for marine search and rescue(SAR) operators automatically predicting the most probable searching area of the drifting object. This paper presents a novel drifting prediction model to improve the accuracy of the drifting trajectory computation of the sea-surface objects. First, a new drifting kinetic model based on the geometry characteristics of the objects is proposed that involves the effects of the object shape and stochastic motion features in addition to the traditional factors of wind and currents. Then, a computer simulation-based method is employed to analyze the stochastic motion features of the drifting objects, which is applied to estimate the uncertainty parameters of the stochastic factors of the drifting objects. Finally, the accuracy of the model is evaluated by comparison with the flume experimental results. It is shown that the proposed method can be used for various shape objects in the drifting trajectory prediction and the maritime search and rescue decision-making system.
王胜正聂皓冰施朝健
Wavelength Estimation Method Based on Radon Transform and Image Texture
2017年
In order to overcome the shortcoming of poor accuracy and non-serious intuitivism of traditional wavelength calculation method in serious noise, a revised Radon transform algorithm is proposed by using a straight-line instead of using the wave's texture approximately applied to wavelength estimation. Firstly, Radon transform of the radar image is analyzed. Then, to obtain its fitting straight line combined with wave texture, the distance is calculated between straight lines to get the wavelength. Finally, the algorithm is programmed with Matlab on PC. The experimental results show that the proposed algorithm can improve the estimation accuracy of the wavelength with good visibility.
LU YingZHUANG XinqingSUN ZhenWANG ShengzhengLIU Wei
Research Review on Marine Search and Rescue被引量:2
2017年
Locating the marine target in a quick and precise way is the crucial point of implementing SAR (search and rescue) at sea, which involves aspects of developing SAR strategy and detects the marine targets. As the effect of marine target detection restricts the SAR result directly, the study has focused on reviewing the previous research about marine target detection, especially dim marine target detection. What's more, small target detection under complex sea status is one of the severe challenges which is research's hotspot and needs more endeavor. Current research results and future research directions are discussed in the paper. The findings can provide systematic view of implementing maritime search and rescue for field researchers and governors.
CHEN XinqiangSHI ChaojianWANG ShengzhengWU HuafengXU TieKE Ruimin
基于Darknet网络和YOLOv3算法的船舶跟踪识别被引量:51
2019年
针对我国沿海与内陆水域区域视频监控处理存在实际利用率低、误差率大、无识别能力、需人工参与等问题,提出基于Darknet网络模型结合YOLOv3算法的船舶跟踪识别方法实现船舶的跟踪并实时检测识别船舶类型,解决了重要监测水域船舶跟踪与识别问题。该方法提出的Darknet网络引入了残差网络的思想,采用跨层跳跃连接方式以增加网络深度,构建船舶深度特征矩阵提取高级船舶特征进行组合学习,得到船舶特征图。在此基础上,引入YOLOv3算法实现基于图像的全局信息进行目标预测,将目标区域预测和目标类别预测整合于单个神经网络模型中。加入惩罚机制来提高帧序列间的船舶特征差异。通过逻辑回归层作二分类预测,实现在准确率较高的情况下快速进行目标跟踪与识别。实验结果表明,提出的算法在30 frame/s的情况下,平均识别精度达到89.5%,与传统以及深度学习算法相比,不仅具有更好的实时性、准确性,对各种环境变化具有较好的鲁棒性,而且可以识别多种船舶的类型及其重要部位。
刘博王胜正赵建森李明峰
关键词:海上交通船舶监测
深度神经网络在船舶自动舵中的应用被引量:2
2018年
为了改进现有船舶自动舵的控制精度,提高自动舵的自适应能力,提出一种基于深度置信网络(DBN)的自动舵控制算法。首先,利用对比散度算法,结合上海海事大学高级船员考试系统中记录的数据,对组成DBN的每一层受限玻尔兹曼机(RBM)模型依次进行预训练,并将结果作为深度神经网络权重的初值。在此基础上,使用反向传播算法,进行多层深度结构的微调训练。仿真实验表明,该方法与资深船长的模拟操船误差仅为5.2%。
李少伟王胜正
关键词:自动舵反向传播算法
共1页<1>
聚类工具0