A key issue in the commercial aircraft engine design is environmental acceptability, and designers are continually challenged to reduce emissions. In this paper, an experimental investigation is performed to evaluate the emission performance of a liquid-fueled trapped vortex combustor (TVC) under lean premixed prevaporized (LPP) mode. When operating as an LPP system, a TVC is fueled both in the cavities and in the main stream. The correlations between the emission performance and the total ex- cess air ratio, the positions (4 positions) of the fuel injectors in the main stream, and the inlet temperature are obtained. Experimental results show that both the volume concentrations of unburnt hydrocarbon (UHC) and NOv (NO, NOxusually grouped together as NOx) increase with the increase of total excess air ratio from 1.5 to 3.0; the emission performance relies heavily on the position of the main stream injector, and the best perfomlance is achieved at Position 4 in the experiments, the increase of the inlet temperature impacts on the emission performance positively: the smallest volume concentrations of UHC and NO,. obtained in the experiment are 94×10^-6 and 2.3× 10 ^-6 respectively. This paper validates the feasibility of low emissions for an LPP/TVC and provides a reference for further optimization of TVCs.
A trapped vortex combustor (TVC) has been a very promising novel concept for it offers improvements in lean blow out, altitude relight, operating range, as well as a potential to decrease NOx emissions compared to conventional combustors. The present paper discusses the improved designs of the new combustor over the prior ones of our research group, including that:a) the over-all dimensions, both axial and radial, are reduced to those of an actual aero-engine combustor; b) the air flow distribution is optimized, and especially 15% of the air is fed into the liner as cooling air; c) a straight-wall diffuser with divergence angle 9°is added. A series of experiments (cavity-fueled only, under atmospheric pressure) has been conducted to investigate the performance of the improved TVC. Experimental results show that at the inlet temperature of 523 K, the inlet pressure of 0.1 MPa, stable operation of the TVC test rig is observed for the Mach number 0.15-0.34, indicating good flame stability; the combustion efficiency obtained in this paper falls into the range of 60%-96%; as the total excess air ratio increases, the combustion efficiency decreases, while the increase of the inlet temperature is beneficial to high combustion efficiency; besides, the optimal Mach numbers for high combustion efficiency under different inlet conditions are confirmed. The outlet temperature profiles feature a bottom in the midheight of the exit. This paper demonstrates the feasibility for the TVC to be applied to a realistic aero-engine preliminarily and provides reference for TVC design.