Large-sczde structure of river flow is the main driving force for bed erosion-deposition and bank delbrmation. The structure shapes and retains a corresponding hydraulic geometry form. Therefore, the most stable flow structure is the probable natural river plane formation. Natural coordinate transformation and perturbation methods were adapted to deform the governing equations of sine-generated river basic flow and disturbance flow independently. The stability and retention of perturbation waves were analyzed in our model to explain why meandering rivers followed a certain type of tqow path. Computation results showed that all types of perturbation waves in meandering rivers were most stable when the meandering wave number was about 0.39-0.41. We believe that this type of stable flow structure shaped a certain meandering river. The statistical average length-width ratios of Yalin, Habib and da Silva and Leopold and Wolman somewhat confirmed our most stable river mean- dering wave number. In some ways, meandering rivers always tend to diminish internal turbulence intensity.
A model for incipient movement of sediment in rolling pattern was established. In this model, the starting of sediment particles under low transport rate, the exposure degree of sediment, the lateral slope of water surface and the effect of transverse circulating current induced by the hydraulic structure of bend flow were fully considered. A theoretical formula for the incipient velocity of non-cohesive and non-uniform sediment in sloping river bends was developed. The results from the theoretical formula compared well with the experimental data.
This paper numerically investigates particle saltation in a turbulent channel flow having a rough bed consisting of 2–3 layers of densely packed spheres.In this study,we combined three the state-of-the-art technologies,i.e.,the direct numerical simulation of turbulent flow,the combined finite-discrete element modelling of the deformation,movement and collision of the particles,and the immersed boundary method for the fluid-solid interaction.Here we verify our code by comparing the flow and particle statistical features with the published data and then present the hydrodynamic forces acting on a particle together with the particle coordinates and velocities,during a typical saltation.We found strong correlation between the abruptly decreasing particle stream-wise velocity and the increasing vertical velocity at collision,which indicates that the continuous saltation of large grain-size particles is controlled by collision parameters such as particle incident angle,local rough bed packing arrangement,and particle density,etc.This physical process is different from that of particle entrainment in which turbulence coherence structures play an important role.Probability distribution functions of several important saltation parameters and the relationships between them are presented.The results show that the saltating particles hitting the windward side of the bed particles are more likely to bounce off the rough bed than those hitting the leeside.Based on the above findings,saltation mechanisms of large grain-size particles in turbulent channel flow are presented.
JI ChunNingANTE MunjizaELDAD AvitalXU DongJOHN Williams