Characteristic of cyclic loading due to passing wheels is associated with one-way loading without stress reversal,which includes a simultaneous cyclic variation of vertical normal stress and horizontal normal stress lasting for a long period of time and generally takes place in partially-drained conditions.Therefore,it is of great practical relevance to study the deformation behaviour according to the characteristic of traffic loading.In this work,a series of one-way stress-controlled cyclic triaxial tests with a simultaneous variation of the vertical and horizontal stress components during cyclic loading were conducted to investigate the deformation behaviour of natural K_0-consolidated soft clay in partially-drained conditions.Test results demonstrate that not only the deviator part of the stress rules accumulation but also the volumetric part significantly contributes.While the deviator part of the stress amplitude is held constant,the increase amplitude of cyclic confining pressure will promote the development of both permanent volumetric strain and axial strain significantly.Furthermore,the effects of cyclic confining pressure on the deformation of natural K_0-consolidated soft clay was quantified.Finally,an empirical formula for permanent axial strain considering the effects of cyclic confining pressure was proposed which can be used for feasibility studies or for the preliminary design of foundations on K_0-consolidated soft clay subjected to traffic loading.